Authors, Creators & Presenters: Myungsuk Moon (Yonsei University), Minhee Kim (Yonsei University), Joonkyo Jung (Yonsei University), Dokyung Song (Yonsei University)
PAPER
ASGARD: Protecting On-Device Deep Neural Networks with Virtualization-Based Trusted Execution Environments
On-device deep learning, increasingly popular for enhancing user privacy, now poses a serious risk to the privacy of deep neural network (DNN) models. Researchers have proposed to leverage Arm TrustZone’s trusted execution environment (TEE) to protect models from attacks originating in the rich execution environment (REE). Existing solutions, however, fall short: (i) those that fully contain DNN inference within a TEE either support inference on CPUs only, or require substantial modifications to closed-source proprietary software for incorporating accelerators; (ii) those that offload part of DNN inference to the REE either leave a portion of DNNs unprotected, or incur large run-time overheads due to frequent model (de)obfuscation and TEE-to-REE exits. We present ASGARD, the first virtualization-based TEE solution designed to protect on-device DNNs on legacy Armv8-A SoCs. Unlike prior work that uses TrustZone-based TEEs for model protection, ASGARD’s TEEs remain compatible with existing proprietary software, maintain the trusted computing base (TCB) minimal, and incur near-zero run-time overhead. To this end, ASGARD (i) securely extends the boundaries of an…